

Characterization of thin irradiated epitaxial silicon sensors for the CMS phase II pixel upgrade

<u>M. Centis Vignali</u>², D. Eckstein¹, T. Eichhorn¹, E. Garutti², A. Junkes², G. Steinbrück²

¹Deutsches Elektronen Synchrotron, DESY ²Institut für Experimentalphysik, Universität Hamburg

Bundesministerium für Bildung und Forschung

Wait, what? Why? ...bear with me...

matteo.centis.vignali@desy.de

iii

UH

CMS Experiment at the LHC, CERN Data recorded: 2015-Jun-03 08:48:32.279552 GMT Run / Event / LS: 246908 / 77874559 / 86

- First 13 TeV collisions in June after a long shutdown
- Luminosity being ramped up
- New period of exploration at the energy frontier

HL-LHC

High statistics is important for many analyses:

- SUSY
- Dark matter search
- Extra dimensions
- Higgs properties
-

78 p-p collisions in high intensity run

DESY

High Luminosity LHC (2025)

- Tenfold increase in statistics: 3000 fb⁻¹
- Luminosity increase to 5 x 10³⁴ cm⁻²s⁻¹
- Mean number of interactions per bunch crossing <µ> ~140 (every 25 ns)

Phase II tracker upgrade

A challenge for the detector!

- Hit rate
- Radiation damage

•

Radiation damage in Si

Bulk damage

- Defect generation
- Change of U
- Increase in leakage current (noise)
- Decrease in signal

Surface damage

- Positive charge at the Si-SiO₂ interface
- Modification of the electric field close to the surface
 - \rightarrow charge losses
 - \rightarrow noise increase
 - \rightarrow break down
- Creation of conductive layers
- Affects sensors and microelectronics

Relevant quantity: dose in the SiO₂

To compare damage of various particle types: damage expressed as equivalent of 1 MeV neutrons [cm⁻²]

 \rightarrow characterization with MIP-like signals required

Beam test of thin (100-200 µm) strip sensors to determine material characteristics

Strip detectors to study pixels?

Pixel detectors

- Noise level ~100 e⁻ before irradiation
- Bump bonding
- Heat treatment to achieve connection between sensor and readout
 - \rightarrow modification of sensor properties
- Irradiation of sensor and electronics
 - \rightarrow modification of electronics

- Noise level ~800 e⁻ before irradiation
- Wire bonding
- No heat treatment for connection with readout electronics
- Separate irradiation
- No modification of electronics

Beam telescope to reconstruct hit position \rightarrow separation of noise from signal

- Epitaxial silicon strips of n and p type (p-spray and p-stop isolation)
- 100 µm active thickness
- 80 µm pitch
- Irradiation with 800 MeV and 23 GeV protons
- Fluences up to $1.3 \times 10^{16} \text{ cm}^{-2}$
- MCZ and FTH with 200 μm physical thickness
 - Only 1.3 x 10¹⁶ cm⁻²

64 AC coupled strips

Epitaxial silicon \rightarrow easy production of detectors with thin active thickness (100 µm)

Results for p-type sensors

 n-type sensors show micro discharges after irradiation (design issue)

Sensors

UH

-20 °C

-800V,

 $3 \times 10^{15} \text{ cm}^{-2}$,

Epi100P, 23 GeV p,

Charge collection p-bulk

Charge collection p-bulk I

Charge collection degrades with irradiation

Charge collection p-bulk II

Charge collection increase with bias after irradiation

Noise p-bulk

Epitaxial silicon for the HL-LHC

Conclusions

The thin sensors show promising results:

- 100 µm, p-bulk
 - Charge collection efficiency of ~65% after a fluence of 10¹⁶ cm⁻²
 - Signal increase with bias
 - Noise increase at high bias
 - Good candidates for outer pixel layers (fluence ~10¹⁵ cm⁻²)
 - Further studies needed for operation after a fluence of 10¹⁶ cm⁻²
- 200 µm, p-bulk
 - Charge collection efficiency of ~35% after a fluence of 10¹⁶ cm⁻² Compared to 100 μm sensors:
 - Slower signal increase with bias
 - Smaller noise

Can 150 µm sensors be a good compromise?

 \rightarrow next common CMS sensor submission will give the answer!

Special thanks to the test beam shifters!

Thank you for your attention!

Backup

LHC and CMS

LHC:

- Large Hadron Collider
- Proton-proton and heavy ions collider
- 27 km circumference
- Operating at 13 TeV
- 4 interaction points

CMS:

- Compact Muon Solenoid
- General purpose experiment
- High luminosity interaction point

Achievements:

- Tests of the standard model
- Discovery of the Higgs boson by ATLAS and CMS

SiQ

Shapers

Bulk, n-type

UH

CMS pixel detector

Total area: 0.78 + 0.28 m² 3 barrel layers 2 endcap discs 66 million 150 x 100 μm² pixels 285 μm n⁺-in-n sensors Charge sharing driven geometry

 $B_s \rightarrow \mu\mu \text{ event}$

- Several sensor layers
- Cylindrical geometry
- Measure primary and secondary vertexes
- High track multiplicity environment
- Fundamental for b-physics
- \bullet Resolution 12 μm

LHC timetable

- Luminosity increase to 5 x 10³⁴ cm⁻²s⁻¹
- Mean number of interaction per bunch crossing <µ> ~140 (every 25 ns)

Beam generation at DESY II

Beam generation at DESY test beam:

- Bremsstrahlung on C fiber
- Conversion in e⁺e⁻ on a metal target
- Momentum selection using a magnet
- Collimator to define the beam

IV characteristic p-bulk sensors

Epitaxial silicon for the HL-LHC

Epitaxial silicon for the HL-LHC

Efficiency Epi 100 p-bulk

Efficiency estimation

Oxygen content

